Технологии улавливания и захоронения углерода

Установки для утилизации углекислого газа

Изобретение относится к области извлечения углекислого газа из воздуха, изменившегося вследствие жизнедеятельности людей, работы технических устройств и др., и может найти применение в системах регенерации воздуха в герметизированных помещениях, химической и других отраслях промышленности.

Улавливание углекислого газа из воздуха при помощи абсорбции хорошо известно, и его используют в течение десятилетий, например, с целью восстановления нормального химического состава воздуха в герметизированных помещениях, химической, космической и других отраслях промышленности. Поглотители, применяемые или предлагаемые в соответствии с существующим уровнем техники, включают различные водные щелочные растворы, такие как карбонат калия или натрия, например, по патенту РФ №2091095 (опубл. 27.09.1997 г.). Данный способ очистки воздуха от диоксида углерода в обитаемом отсеке объекта коллективной защиты осуществляется путем абсорбции двуокиси углерода щелочным раствором, охлаждения очищенного воздуха с последующей подачей обогащенного кислородом воздуха в обитаемый отсек объекта и отличается тем, что абсорбцию двуокиси углерода проводят щелочным раствором элементов второй группы в присутствии кристаллизатора, представляющего собой твердые частицы карбонатов, при этом над поверхностью раствора располагают металлизированную шихту для осаждения капелек барботируемого воздухом щелочного раствора, которым связывают не успевшую прореагировать в растворе двуокись углерода, а перед охлаждением его осушают. Способ требует использования металлической шихты, что делает установку на его основе в целом громоздкой, а процесс осушки и охлаждения слишком энергозатратным.

В качестве аналога изобретения служит установка для концентрирования диоксида углерода, извлекаемого из атмосферы, по патенту РФ №98938 (опубл. 10.11.2010 г.), в соответствии с которым концентрирование диоксида углерода производят на диффузионных мембранах с последующей подачей образовавшегося раствора в десорбер, к которому подведены газоотводные трубки, ведущие в водородно-кислородный топливный элемент, функцией которого является окисление образовавшегося водорода и выработка электроэнергии. Данный вариант установки работает следующим образом: поток очищаемого воздуха из атмосферы замкнутого обитаемого объекта с помощью воздуходувки подается в абсорбер, представляющий из себя мембранный диффузионный аппарат, при этом воздух продувается с одной стороны мембраны, а поглощающий углекислый газ раствор щелочи циркулирует с другой стороны мембраны. За счет диффузии через стенку мембраны углекислый газ поглощается щелочью с образованием карбонатных и бикарбонатных солей. На выходе из абсорбера очищенный от углекислого газа воздух подается в атмосферу обитаемого объекта, а полученный раствор солей с помощью жидкостного насоса прокачивается через десорбер, представляющий собой электролизер, где из раствора солей выделяется углекислый газ, а из воды — водород и кислород. Полученные водород, кислород и углекислый газ направляются в водородно-кислородный топливный элемент, где происходит окисление водорода, и далее углекислый газ и пары воды направляются в систему утилизации.

Недостатками данного изобретения являются: низкая эффективность работы абсорбера вследствие неравномерности прохождения потока очищаемого воздуха через стенки мембраны; наличие насосов высокого давления, существенно повышающих виброшумовые характеристики установки, наличие топливного элемента, существенно снижающего ресурс работы системы и усложняющего ее конструкцию, необходимость использования дополнительных преобразователей электрической энергии для ее возврата; наличие дополнительных газов, выделяющихся в камере электролизера и образующих взрывоопасные смеси.

Техническим результатом, на достижение которого направлено заявляемое изобретение, является:

создание простой, безопасной установки абсорбции и электрохимической десорбции углекислого газа с увеличенным ресурсом работы, низкими виброшумовыми характеристиками и повышенной степенью извлечения углекислого газа из воздуха, при этом позволяющей компримировать углекислый газ.

Заявленный технический результат достигается тем, что установка абсорбции и электрохимической десорбции углекислого газа, содержащая подсистему абсорбции, включающую входной патрубок вентилятора, подающего поток очищаемого воздуха, выходной патрубок системы вентиляции, распылительную форсунку подачи раствора поглотителя в поток очищаемого воздуха; емкость для сбора прореагировавшего раствора поглотителя, соединенную с подсистемой десорбции, трубопроводами с функцией принудительной циркуляции используемых реагентов, отличается тем, что

кроме того, подсистема абсорбции может содержать в рабочем пространстве абсорбера перфорированный трубопровод для подачи потока очищаемого воздуха на спиралевидную насадку, увеличивающую поверхность контакта воздух/абсорбент, с выходным патрубком системы вентиляции в верхней части рабочего пространства,

кроме того, подсистема десорбции может быть выполнена как электрохимический десорбер, состоящий из трехкамерных электрохимических ячеек, с двумя катионообменными мембранами, разделяющими рабочее пространство на катодную камеру, камеру декарбонизации и анодную камеру, с возможностью принудительной подачи прореагировавшего раствора поглотителя в катодную камеру и камеру декарбонизации,

с выходами из катодной камеры водорода и раствора поглотителя в сепаратор фазового разделения и последующей подачей раствора поглотителя на распылительную форсунку абсорбера, а компримированного водорода по трубопроводу, содержащему клапан «до себя», в анодную камеру,

с выходами из камеры декарбонизации углекислого газа и воды в сепаратор фазового разделения и последующей подачей воды в сборную емкость абсорбера, а компримированного углекислого газа по трубопроводу, содержащему клапан «до себя», в систему утилизации углекислого газа.

Сущность заявленного изобретения поясняется на фиг. 1, где представлена функциональная схема установки абсорбции и электрохимической десорбции углекислого газа.

Основными узлами установки абсорбции и электрохимической десорбции углекислого газа являются подсистема абсорбции и подсистема электрохимической десорбции. Подсистема абсорбции состоит из вентилятора 1, патрубка 2 входного, абсорбера 3, насадки 4, форсунки 5, емкости 6 сборной, патрубка 7 выходного. Подсистема электрохимической десорбции состоит из ячейки 8 трехкамерной электрохимической с двумя мембранами 9 катионообменными, разделяющими ячейку на камеру 10 катодную, камеру 11 декарбонизации и камеру 12 анодную, насоса 13 электрохимического, сепаратора 16 фазового разделения, клапана «до себя» 18, сепаратора 20 фазового разделения, клапана «до себя» 22.

Также установка абсорбции и электрохимической десорбции углекислого газа включает трубопровод 14, трубопровод 15, трубопровод 17, трубопровод 19, трубопровод 21.

Установка абсорбции и электрохимической десорбции углекислого газа работает следующим образом.

Вентилятор 1 подает воздух с повышенным содержанием углекислого газа через патрубок 2 в абсорбер 3, содержащий насадку 4 и форсунку 5, через которую на насадку 3 распыляется раствор поглотителя, взаимодействующий с углекислым газом в соответствии со следующей химической реакцией:

Образовавшийся водный раствор карбоната калия сливается в емкость 6 сборную абсорбера 3.

Очищенный воздух через патрубок 7 выходной поступает в систему вентиляции герметизированного помещения.

Из емкости 6 сборной водный раствор карбоната калия с помощью насоса 13 электрохимического по трубопроводу 14 подается в камеру 10 катодную и камеру 11 декарбонизации ячейки 8 трехкамерной электрохимической с двумя мембранами 9 катионообменными подсистемы электрохимической десорбции, в которой происходит его электрохимическая регенерация до водного раствора гидроксида калия и выделение углекислого газа.

Электрохимическая регенерация осуществляется в десорбере следующим образом:

— в камере 12 анодной происходит образование ионов водорода H + по реакции: Н2-2е — =2Н + ;

— ионы водорода H + переходят через мембрану 9 катионообменную в камеру 11 декарбонизации и замещают в карбонате калия ионы K + , в результате чего образуется угольная кислота H2CO3, которая разлагается на углекислый газ и воду: H2CO3=CO2+H2O;

— одновременно с этим из камеры 11 декарбонизации в камеру 10 катодную через мембрану 9 катионообменную переходят ионы калия K + ;

— в катодном процессе происходит разложение воды: 2H2O+2е — =H2+2OH — , т.е. образуется водород и гидроксид-ионы OH — ;

— ионы калия K + соединяются с гидроксид-ионами OH — , образуя KOH: K + +OH — =KOH.

Образовавшийся в камере 11 декарбонизации углекислый газ и вода собираются в сепараторе 16 фазового разделения, где углекислый газ компримируется с помощью клапана «до себя» 18 и по трубопроводу 17 поступает в систему утилизации углекислого газа, а вода поступает по трубопроводу 19 в емкость 6 сборную абсорбера 3.

Образовавшийся в камере 10 катодной водород и водный раствор гидроксида калия собираются в сепараторе 20 фазового разделения, где водород компримируется с помощью клапана «до себя» 22 и по трубопроводу 21 поступает в камеру 12 анодную, а водный раствор гидроксида калия (поглотитель) поступает по трубопроводу 15 в форсунку 5 абсорбера 3 для поглощения углекислого газа.

К технико-экономическим преимуществам данного изобретения относится способность компримировать углекислый газ, таким образом, появляется возможность отказаться от компрессоров, необходимых для подачи углекислого газа в систему утилизации, что позволяет существенно понизить как стоимость установки, так и ее виброшумовые характеристики.

Читайте также:  Откуда потребитель может узнать что пора вызывать мастера

Источник

Технологии улавливания и захоронения углерода

Высокая стоимость промышленных установок, отсутствие универсальной инфраструктуры и значительная энерго- и ресурсоемкость сдерживают активное применение традиционных методов выделения СО2 из дымовых газов. На фоне данных ограничений прорывной стала технология кальциево-карбонатного цикла (ККЦ), использующая в качестве хемосорбента (сорбент, образующий при взаимодействии с поглощаемым веществом химическое соединение) оксид кальция, который получают из дешевых и широко распространенных кальцийсодержащих известняков и доломитов.

Техническая реализация метода заключается в перемещении сорбента CaO между двумя реакторами с кипящим слоем, в одном из которых при пониженной температуре происходит поглощение СО2, а в другом при более высокой температуре — разложение карбоната кальция. Применение данной технологии ориентировано, в первую очередь, на угольные электростанции с высокими выбросами СО2 на единицу производимой мощности.
Использование ККЦ для выделения СО2 из дымовых газов имеет ряд несомненных преимуществ, среди которых: относительная дешевизна метода, значительное сокращение количества требуемого для реакции кислорода, а также ускорение процесса поглощения углекислого газа благодаря высокой температуре проведения реакции.

Эффекты

Снижение удельной стоимости предотвращенного выброса СО2 в 2 раза (с 1800 руб./т (традиционная аминовая очистка) до 900 руб./т)

Сокращение энергопотерь до 6–8% (по сравнению с 13–15% в аминовых технологиях)

Коэффициент улавливания — около 90% от общего количества СО2

Возможность выделения СО2 при температурах свыше 600 °С

Оценки рынка

$ 29 млрд

к 2020 г. составит удельная стоимость предотвращенного выброса СО2 с использованием технологии ККЦ в России

Рынок технологий улавливания СО2 только развивается, по всему миру действуют 22 проекта с использованием этих технологий, 14 проектов ожидают старта.

В 2015 г. объем мирового рынка улавливания СО2 в номинальном выражении составил 61,2 килотонны в 2015 г.

Вероятный срок максимального проявления технологического тренда: 2030–2040 гг.

Драйверы и барьеры

Удобство использования автомобильной техники на ТЭ (не требуют перезарядки, моментально поставляют электроэнергию, выработка энергии ТЭ не зависит от времени суток, погодных условий и др. )

В перспективе открытие более дешевых и эффективных катализаторов для получения водорода позволит значительно снизить стоимость производства водородных ТЭ

Высокие затраты на выработку водорода: от $4 до $12 за килограмм в разных странах (бензин-галлоновая эквивалентная стоимость составляет от $1,60 до $4,80)

Отсутствие автомобильной инфраструктуры

Сложность в эксплуатации: у язвимость к ударным нагрузкам и сотрясениям, взрывоопасность, при низких температурах ТЭ требуют внешнего подогрева из-за замерзающей воды

Отсутствие единых стандартов безопасности, хранения, транспортировки, распределения и применения водородных ТЭ

Международные
научные публикации

Международные
патентные заявки

Уровень развития
технологии в России

«Заделы» – наличие базовых знаний, компетенций, инфраструктуры, которые могут быть использованы для форсированного развития соответствующих направлений исследований.

ЭКОЛОГИЧЕСКИ ЧИСТОЕ ВЫДЕЛЕНИЕ СО2 С ИСПОЛЬЗОВАНИЕМ ФЕРМЕНТОВ

При выборе метода CCS первостепенное значение имеют экологичность и рентабельность технологии. Одним из наиболее перспективных способов выделения СО2 является использование ферментов — органических веществ белковой природы. Ключевая роль в ферментном разделении СО2 отводится карбоангидразе, имитирующей природный фермент человеческих легких, который захватывает и выводит СО2 из крови и тканей. Она катализирует химическую реакцию между диоксидом углерода и водой, преобразуя углекислый газ в бикарбонат, который затем может быть переработан в пищевую соду и мел.

Для работы в промышленных условиях фермент иммобилизуется с растворителем внутри реактора. При прохождении дымового газа через растворитель фермент превращает углекислый газ в бикарбонат.

Эффекты

Ускорение процесса выделения СО2 из промышленных выбросов с использованием мембран на ферментах в 100 раз по сравнению с традиционными полимерными мембранами

В 10–100 раз увеличится эффективность выделения СО2 из дымовых газов с использованием ферментов в мембранах по сравнению с использованием в них азота

Получение экологически чистого (на 90–99%) углекислого газа

Сокращение выбросов СО2 на 1,2 Мт в год на одной угольной электростанции мощностью 1000 МВт

Оценки рынка

в 2019 г. составит объем глобального рынка промышленных ферментов (темпы ежегодного роста — 8%).

к 2019 г. достигнет российский рынок промышленных ферментов (в 2012 г. — $173 млн, темпы роста — 10% в год)

Вероятный срок максимального проявления тренда: 2040–2050 гг.

Драйверы и барьеры

Увеличение выплат предприятий за выбросы загрязняющих веществ в атмосферу

Развитие биотехнологий и признание ферментов эффективным катализатором в энергетике

Относительно низкие капитальные затраты на установку и эксплуатацию систем очистки выбросов с использованием ферментов

Отсутствие стимулов по использованию ферментов в промышленном производстве в связи с наличием менее затратных технологий

Высокая конкуренция на мировом рынке ферментов и ферментных препаратов

Международные
научные публикации

Международные
патентные заявки

Уровень развития
технологии в России

«Белые пятна» – существенное отставание от мирового уровня, отсутствие (или утрата) научных школ

МЕМБРАННЫЕ СИСТЕМЫ ДЛЯ ЗАХВАТА СО2 ДО СЖИГАНИЯ

Существенная роль в сокращении эмиссии углекислого газа и уменьшении негативных последствий глобального изменения климата принадлежит технологиям захвата СО2 до сжигания. Однако использование традиционных аминовых технологий увеличивает стоимость электроэнергии на 80% и ее расход на 25–40% от показателей без применения технологий CCS.

Среди доступных альтернатив наиболее перспективно использование мембранных систем, не требующих серьезных инвестиций по установке. Мембрана пропускает конденсирующиеся пары (C3+ углеводороды и тяжелее; ароматические углеводороды; воду), но не пропускает неконденсируемые газы (метан, этан, азот и водород). Данный метод позволит существенно снизить негативное влияние выбросов углекислого газа на экологию, сократит затраты на электроэнергию.

Эффекты

Достижение уровня чистоты продуктов СО2 в 95–98%

Снижение стоимости предотвращенного выброса до 62–100 $/т

Сокращение затрат на улавливание и захоронение углерода на 15% по сравнению с абсорбционными и адсорбционными методами CCS

Оценки рынка

к 2023 г. достигнет мировой рынок улавливания и хранения углерода (2015 г. — $2,2 млрд). Темпы ежегодного роста 2016-2023 гг. — 25%

составит объем мирового рынка мембран к 2021 г. (темпы ежегодного роста – 7,7%)

До 12 млрд руб. к 2020 г. может вырасти рынок мембран в России (в 2016 г. — 5 млрд руб.), однако, мембраны для улавливания парниковых газов пока на рынке представлены мало

Вероятный срок максимального проявления тренда: 2030–2035 гг.

Драйверы и барьеры

Простота эксплуатации, отсутствие необходимости часто менять или промывать элементы

Минимальный расход воды и материалов

Низкие капитальные затраты на установку мембранных систем

Возможность применения мембранных систем в удаленных и труднодоступных районах, в зоне децентрализованной энергетики, для микро-ТЭЦ и дизель-генераторных электростанций

Недостаточность инвестиций в научные исследования мембранных технологий для CCS

Недостаточный уровень компетенций по разработке и производству мембранных систем

Международные
научные публикации

Международные
патентные заявки

Уровень развития
технологии в России

«Заделы» – наличие базовых знаний, компетенций, инфраструктуры, которые могут быть использованы для форсированного развития соответствующих направлений исследований.

Источник



Углерод из воздуха

В Канаде тестируют новую технологию удаления углекислого газа из атмосферы. Система Carbon Engineering создана для очистки воздуха в любом уголке земли, независимо от близости источников загрязнения. Насколько эффективен такой подход? И сколько нужно установок, чтобы остановить глобальное потепление?

На сегодня в мире насчитывается всего около 20 установок, которые улавливают углекислый газ (CO2) в промышленных масштабах. И все они расположены непосредственно на выходе из дымовых труб предприятий. Пока это, конечно, капля в море, но с развитием отрасли количество таких фильтрующих систем будет увеличиваться. А вот что делать с углеродом, который уже вырвался наружу? На сегодня концентрация CO2 в атмосфере составляет 0,04%, и этот показатель растет. Глобальные выбросы углекислого газа достигли 36 гигатонн в год, а средняя мировая температура повысилась уже на 1 ° С. Напомним, согласно Парижскому соглашению по климату, мировое сообщество должно сделать все возможное, чтобы удержать потепление в пределах 1,5 ° С до конца 21 века.

В противном случае планете грозят катастрофические последствия: затопление городов, вымирание видов, засуха и другие природные катаклизмы.

Межправительственная группа экспертов по изменению климата (МГЭИК) предупредила, что для достижения поставленных целей перехода к углеродно-нейтральному обществу уже недостаточно, надо срочно внедрять технологии прямого улавливания CO2 из воздуха.

«Текущие модели предполагают, что нам нужно будет удалять 10 гигатонн CO2 в год к 2050 году, а к концу века это количество должно удвоиться до 20 гигатонн. Прямо сейчас мы практически ничего не удаляем. Поэтому придется масштабироваться с нуля», — говорит Джейн Зеликова, известный ученый-климатолог из Университета Вайоминга.

Пилотный завод Carbon Engineering в Британской Колумбии

Читайте также:  Установка метанового оборудования нижний новгород

Одна из первых в мире промышленных установок для прямого улавливания CO2 из воздуха появилась в городе Сквамиш Британской Колумбии (Канада). Это ноу-хау компании Carbon Engineering. Система мощных вентиляторов засасывает воздух и прогоняет его через фильтр, залитый гидроксидом калия. Углекислый газ поглощается этим раствором, попадает во вторую камеру и смешивается с гидроксидом кальция (строительная известь). Известь удерживает растворенный CO2, образуя небольшие чешуйки известняка. Эти частицы отсеиваются и нагреваются в третьей камере до тех пор, пока не разложатся с выделением чистого углекислого газа, который улавливается и отправляется на хранение.

Схема улавливания CO2 на заводе Carbon Engineering

Завод в Сквамише создан как испытательный стенд для тестирования различных технологических процессов. В ближайшее время компания приступит к строительству гораздо более крупного завода на нефтяных месторождениях западного Техаса, который будет ежегодно улавливать 1 миллион тонн CO2. Для сравнения, столько же поглощают 40 миллионов деревьев.

В компании утверждают, что их технология достаточно бюджетна: сбор одной тонны CO2 обходится примерно в 100 долларов США. При этом заводы работают на возобновляемой энергии или природном газе и не производят никаких собственных выбросов.

Проект завода Carbon Engineering в западном Техасе

Еще один завод по улавливанию и хранению углекислого газа строится в геотермальном парке Hellisheidi в Исландии. Он будет работать на возобновляемой энергии, а собранный газ закачивать в собственное подземное хранилище. Предприятие сможет фильтровать до 4-х миллионов тонн CO2 ежегодно и станет крупнейшим в мире объектом, способствующим улучшению климата. Запуск намечен на лето 2021 года.

Строительство завода Orca, геотермальный парк Hellisheidi, Исландия, март 2021 г

Правда, есть у этой технологии и недостатки. Чтобы успевать фильтровать все 36 гигатонн CO2 в год, нужно около 30 000 заводов, то есть более трех на каждую угольную электростанцию, работающую сегодня в мире. Каждый завод обойдется в 500 млн долларов, а общая стоимость строительства составит почти 15 трлн долларов. Для сравнения годовой бюджет США на 2021 год — 4,8 трлн долларов. К тому же для бесперебойной работы систем потребуется около 14 млн тонн гидроксида калия, что в 5,4 раз превышает годовые поставки этого вещества во всем мире.

Одним словом, деньги потребуются немалые. Но зато в результате прямого улавливания воздуха можно получить ценный продукт — тысячи тонн сжатого CO2. Одним из крупнейших его потребителей является сектор добычи природных ископаемых. В частности, нефтяная отрасль. Углекислый газ закачивается под землю и создает нужное давление, повышая нефтеотдачу. Также отфильтрованный газ можно комбинировать с водородом и получать синтетическое углеродно-нейтральное топливо.

Еще одна перспективная сфера применения — улучшение роста овощей и зелени. Яркий пример — известная голландская компания по переработке отходов в энергию AVR, которая недавно модернизировала один из своих заводов в Дэйвене, установив специальное оборудование для улавливания CO2 из выбросов. Углекислый газ сжимается до жидкого состояния и цистернами отправляется в ближайшую теплицу. Раньше для этих целей приходилось сжигать природный газ. За месяц объемы выбросов парниковых газов удалось сократить на 7,5 тысяч тонн.

Цистерна с жидким CO2 едет с завода AVR Duiven в теплицу

Альтернативой «прямому захвату» газа могло бы стать восстановление торфяников или высадка лесов, которые, как известно, поглощают углекислый газ. Но это весьма длительный процесс, к тому же требующий огромных земельных участков, по некоторым оценкам, размером с Соединенные Штаты. При этом эффект от высадки растений недолговечен, поскольку они рано или поздно погибают, высвобождая накопленный углерод. Единственный вариант — их вовремя вырубать и утилизировать в закрытых системах.

Интересный проект недавно представил ученый из Аризонского университета Клаус Лакнер. Он изобрел «механическое дерево», которое чистит воздух от CO2 подобно своим живым аналогам. Фильтруя потоки ветра, оно улавливает молекулы углерода и отправляет в специальное хранилище. И все происходит без механического всасывания воздуха, а значит без энергоемких устройств. По словам разработчика, это наиболее дешевый способ улавливания CO2 — менее $100 за тонну. Стартап уже нашел инвестора, и в ближайшее время на просторах Аризоны «вырастут» 1200 новых «деревьев». Они смогут улавливать 36 000 тонн углекислого газа в год, что соответствует выбросам почти 8 000 автомобилей.

«Механическое дерево» Клауса Лакнера

К делу глобальной декарбонизации планеты уже подключились крупнейшие корпорации. Microsoft , United Airlines и ExxonMobil инвестировали в эту область миллиарды долларов. 100 миллионов долларов пообещал выделить Илон Маск. А созданный в конце 2020 года Инновационный фонд ЕС направит на проекты, связанные в том числе с улавливанием и хранением углерода, 1 млрд евро. Сейчас идет конкурс заявок.

Кстати, в шорт-лист уже попали два амбициозных проекта в сфере waste-to-energy — Fortum Oslo Varme в Норвегии и Amager Bakke в Дании. Оба завода по переработке отходов в энергию намерены свести свой углеродный след практически к нулю. И если финансирование будет одобрено, новые установки снизят выбросы CO2 в общей сложности на 900 000 тонн ежегодно. А Копенгаген сделает важнейший шаг к амбициозной цели — стать первой столицей в мире с нулевым выбросом углерода.

Источник

За дымовой завесой. Как утилизация углекислого газа изменит мир

Фото REUTERS / Victor Fraile Фото REUTERS / Victor Fraile

Компании Statoil, Shell и Total 2 октября 2017 года объявили о подписании партнерского соглашения по проекту улавливания и хранения углекислого газа CCS (carbon capture and storage) на Норвежском континентальном шельфе, что с воодушевлением было воспринято мировым сообществом и организациями, занимающимися проблемами утилизации углекислого газа.

Кратко о проекте: CO2 будет улавливаться на наземных промышленных объектах в Восточной Норвегии — на электростанции или промышленном предприятии. Затем газ будет транспортироваться судном на приемный терминал на западном побережье Норвегии, где будет перегружаться с судна в промежуточные резервуары-хранилища перед транспортировкой по подводному трубопроводу, а затем закачиваться в скважины к востоку от месторождения Тролл. Первая фаза проекта предполагает утилизацию 1,5 млн тонн СО2 в год.

Схема проекта CCS в Норвегии

В рамках соглашения компании договорились выделить специалистов, ресурсы и обменяться разработками в данной сфере, но окончательное инвестиционное решение еще не принято. На следующий день после подписания исполнительный советник в Global CCS Institute Джон Скоукрофт приветствовал данное соглашение словами: «Этот проект демонстрирует твердую приверженность всех сторон продвижению CCS и значительному сокращению выбросов в промышленном секторе. Это захватывающий проект, в котором на первый план выходит способность к обмену знаниями и сотрудничеству. Мы надеемся, что он поможет ускорить развитие CCS в регионе и во всем мире». Новость быстро облетела мировые СМИ и была воспринята как новая надежда для подобных проектов. Неудивительно, ведь ранее Трамп нанес серьезный удар по Парижскому соглашению 2015 года, которое с таким трудом удалось согласовать между всеми странами-участниками, заявив о выходе США из данного договора, а представить такое глобальное климатическое соглашение без страны, являющейся вторым по объему источником СО2 в мире практически невозможно.

Однако, невзирая на позицию США, остальные страны решили продолжить вектор на снижение выбросов, и в последнее время появляется все больше информации по новым проектам. Вопросами утилизации углекислого газа занимается множество исследовательских институтов и организаций. Среди них можно особенно выделить: Global CCS Institute, World Resource Institute WRI, International Energy Agency (IEA), а также другие исследовательские центры — US-China CERC (Китай), UK CCS (Великобритания), Peter Cook Сenter (Австралия), NCCS (Норвегия)и другие. В России некоторые исследования по данной тематике велись институтом ВНИГРИ в Санкт-Петербурге.

Читайте также:  Консультация ортодонта распределение цен в Москве

Не вдаваясь в технические детали, подобные проекты условно можно разделить на два типа: CCS (carbon capture and storage) и CCS-EOR (carbon capture and storage, enhanced oil recovery). Хотя суть данных проектов заключается в утилизации углекислого газа, их следует рассмотреть по отдельности.

CCS проекты

Такие проекты подразумевают улавливание углекислого газа на различных объектах промышленности и его хранение в подземных пластах-хранилищах. Данный способ является единственным методом по существенному сокращению выбросов парниковых газов и может быть использован не только на объектах по выработке электроэнергии, но и на металлургических предприятиях, цементных заводах, нефтехимических заводах, а также на заводах по производству биотоплива. В зависимости от вида источника будет варьироваться эффективность его улавливания. Также будет варьироваться и себестоимость улавливаемого углекислого газа. Наиболее эффективным является улавливание углекислого газа на заводе по производству биотоплива, так как там углекислый газ выделяется уже в процессе производства и требует только осушки и очистки. Тогда как, например, улавливание углекислого газа на нефтеперерабатывающем заводе затруднено неравномерным распределением его технологических источников и требует значительных капиталовложений.

Ключевую роль играет само наличие тех или иных предприятий, эмитирующих СО2 в конкретном регионе. По распространению таких предприятий, несомненно, лидируют электростанции, производящие электричество за счет сжигания угля или газа. Именно они в первую очередь представляют интерес для проектов по улавливанию СО2.

Опыт эксплуатации подобных объектов тоже имеется, например, первый полномасштабный проект по модернизации генерирующих мощностей угольной электростанции и одновременной установки улавливающего СО2 оборудования мощностью 1 млн тонн в год Boundary Dam в Канаде. Другой проект угольной электростанции Kemper County в Миссиссипи также строится с применением CCS-технологий. Вообще, согласно Global CCS Institute, в настоящее время в мире насчитывается 17 крупномасштабных объектов CCS и еще четыре проекта запланированы в 2017-2018 годах. Подчеркнем, именно крупномасштабных проектов, а не мелких демонстрационных, которых уже насчитывается множество.

Существующие технологии позволяют уловить 90—99 % углекислого газа, однако, чем выше процент улавливания, тем дороже стоимость такой установки. Затраты по этим проектам, конечно, не маленькие. Возьмем, к примеру, Boundary Dam, где капитальные затраты по проекту составили $1,355 млрд (501 млн на модернизацию 3 блока электростанции и $854 млн на строительство установки по улавливанию СО2). Не стоит забывать про хранение и последующую транспортировку СО2 по трубопроводу, которая может стоить около $1 млн за километр. Также потребуется несущественное переоборудование скважин с применением антикоррозионных сплавов. Во многом именно поэтому хранение СО2 целесообразно проводить в бывших нефтяных коллекторах — там уже присутствуют скважины, они очень хорошо изучены, построены разнообразные геологические модели которые помогут предотвратить утечки. Это является очень важным фактором, ведь основная цель проекта — убедиться, что недешевый углекислый газ надежно хранится там, где ему положено, и не выйдет на поверхность по разлому в породе. Есть и другие варианты захоронения СО2 — например, в солевых образованиях, что тоже представляется многообещающим.

К сожалению, кроме как социальной и экологической выгоды от CCS проектов пока ожидать не стоит. Есть вариант с продажей квот на выбросы СО2 другим предприятиям, но при нынешнем состоянии развития данного рынка есть большие сомнения, что они в состоянии будут покрыть капитальные затраты.

CCS-EOR проекты

Совсем другая история с проектами CCS-EOR. Их единственное и очень существенное отличие от проектов CCS заключается в том, что посредством закачки и утилизации углекислого газа в пласте увеличивается коэффициент извлечения нефти. Другими словами, закачиваемый в пласт СО2 служит агентом, который снижает вязкость нефти и повышает ее подвижность.

В результате приток нефти к скважине увеличивается, что позволяет дополнительно извлечь из пласта до 15% запасов нефти. Как правило, закачка газа чередуется с закачкой воды, что делает процесс более эффективным, а также не позволяет углекислому газу прорываться по высокопроницаемым местам коллектора. Надо отметить, что данные проекты являются очень сложными с технической точки зрения, требуют высокой изученности месторождения (отчасти поэтому применяются на месторождениях с падающей добычей или выработанными запасами), а также значительных денежных ресурсов, большая часть которых требуется на бурение новых скважин.

Помимо капитальных затрат, возникают также и операционные на покупку того же СО2. Ведь мало кто согласиться поставлять газ бесплатно, или это должно стимулироваться правительством. Как пример полномасштабного CCS-EOR проекта можно привести Boundary dam — весь углекислый газ направляется на закачку на близлежащее нефтяное месторождение, точнее сказать — продается по $25 за тонну. Цена достаточно низкая для газа, уловленного на угольной электростанции, но она не является конечной. Беглый экономический анализ показывает, что рентабельность подобного CCS проекта будет достигаться от $40-80 за тонну СО2, в зависимости от цены на топливо, мощности, возраста, местонахождения электростанции и других факторов.

Тут хотелось бы отдельно отметить, что даже при условии бесплатных поставок СО2 на месторождение, этого может оказаться недостаточно для рентабельности проекта. Поэтому строить трубопровод к отдельному месторождению можно только в случае, если оно удовлетворяет экономическим параметрам и обладает достаточными ресурсами. По расчетам Энергетического центра бизнес-школы СКОЛКОВО, даже для крупного месторождения нецелесообразно строить трубопровод длиной более 50 километров. Если же месторождение не крупное, целесообразно применять кластерную разработку месторождений или прилегающих сателлитов.

Обратить внимание еще нужно на то, что углекислого газа для закачки в пласт с течением времени требуется все меньше. Часть газа отделяется от нефти на месторождении и подвергается обратной закачке. По мере насыщения пласта газом его отбор из трубопровода будет замедляться, а высвобождаемый объем СО2 может быть направлен на прилегающие месторождения. Программа разработки проекта предполагает, что оптимальным временем для начала закачки является 2-5 лет после прекращения добычи месторождения на плато. Для выполнения подобных проектов, конечно, требуется высокий профессионализм, выполнение технических условий, а также наличия опыта.

Технические и экономические детали при выполнении подобных проектов, играют очень важную роль, но не меньшую роль играет и наличие достаточного количества СО2. В США подобные CCS-EOR проекты получили широкое распространение во многом благодаря наличию естественных источников углекислого газа в виде месторождений. Это существенно позволяет сократить издержки проекта, а наличие развитой сети трубопроводов позволяет легко транспортировать углекислый газ до месторождения. В России же, месторождения с углекислым газомнаходятся в значительной удаленности от основных центров добычи, что позволяет сделать вывод о необходимости поиска техногенных источников.

Россия: опыт и перспективы

Нельзя не сказать об имеющемся опыте подобных проектов в нашей стране. Еще в Советском союзе в 1960-80 годах проводились эксперименты по закачке СО2 в растворенном в воде виде. Были получены неплохие результаты по увеличению охвата пласта заводнением и неплохие показатели добычи, но технические сложности, нехватка оборудования и ресурсов не дали в полной мере продолжить начатые проекты.

При этом потенциал проектов CCS-EOR в России огромнейший. По предварительным расчетам, представленным компанией Rystad, в России насчитывается около 930 месторождений, потенциально подходящих для интенсификации добычи закачкой углекислого газа. В тоже время потенциальный объем СО2, который может быть утилизирован в пластах, оценивается около 11,8 гигатонн. Это примерно равно годовым выбросам всего Китая. Конечно, есть одно но — потенциал утилизации по одному отдельному месторождению низкий, примерно 13 млн тонн СО2, из чего следует, что при реализации подобных проектов следует разработать комплексный (кластерный) подход.

В условиях естественного падения добычи на месторождениях, а также увеличения доли трудноизвлекаемых запасов, методы увеличения нефтеотдачи становятся все более актуальными. Потенциально извлекаемые ресурсы с применением технологии закачки углекислого газа в пласт России могут составить до 15 млрд баррелей нефти. Единственная проблема — это существенное удаление месторождений от промышленных предприятий, но при должном планировании и она может быть решена. CCS проекты это уже не миф, а реальность.

Источник

Adblock
detector